Spring Boot内存泄露,排查_springboot内存查看

阿里云国内75折 回扣 微信号:monov8
阿里云国际,腾讯云国际,低至75折。AWS 93折 免费开户实名账号 代冲值 优惠多多 微信号:monov8 飞机:@monov6

背景

为了更好地实现对项目的管理我们将组内一个项目迁移到MDP框架基于Spring Boot随后我们就发现系统会频繁报出Swap区域使用量过高的异常。笔者被叫去帮忙查看原因发现配置了4G堆内内存但是实际使用的物理内存竟然高达7G确实不正常。JVM参数配置是“-XX:MetaspaceSize=256M -XX:MaxMetaspaceSize=256M -XX:+AlwaysPreTouch -XX:ReservedCodeCacheSize=128m -XX:InitialCodeCacheSize=128m, -Xss512k -Xmx4g -Xms4g,-XX:+UseG1GC -XX:G1HeapRegionSize=4M”实际使用的物理内存如下图所示

top命令显示的内存情况

排查过程

1. 使用Java层面的工具定位内存区域堆内内存、Code区域或者使用unsafe.allocateMemory和DirectByteBuffer申请的堆外内存

笔者在项目中添加-XX:NativeMemoryTracking=detailJVM参数重启项目使用命令jcmd pid VM.native_memory detail查看到的内存分布如下

jcmd显示的内存情况

发现命令显示的committed的内存小于物理内存因为jcmd命令显示的内存包含堆内内存、Code区域、通过unsafe.allocateMemory和DirectByteBuffer申请的内存但是不包含其他Native CodeC代码申请的堆外内存。所以猜测是使用Native Code申请内存所导致的问题。

为了防止误判笔者使用了pmap查看内存分布发现大量的64M的地址而这些地址空间不在jcmd命令所给出的地址空间里面基本上就断定就是这些64M的内存所导致。

pmap显示的内存情况

2. 使用系统层面的工具定位堆外内存

因为笔者已经基本上确定是Native Code所引起而Java层面的工具不便于排查此类问题只能使用系统层面的工具去定位问题。

首先使用了gperftools去定位问题

gperftools的使用方法可以参考gperftoolsgperftools的监控如下

gperftools监控

从上图可以看出使用malloc申请的的内存最高到3G之后就释放了之后始终维持在700M-800M。笔者第一反应是难道Native Code中没有使用malloc申请直接使用mmap/brk申请的gperftools原理就使用动态链接的方式替换了操作系统默认的内存分配器glibc。

然后使用strace去追踪系统调用

因为使用gperftools没有追踪到这些内存于是直接使用命令“strace -f -e”brk,mmap,munmap” -p pid”追踪向OS申请内存请求但是并没有发现有可疑内存申请。strace监控如下图所示:

strace监控

接着使用GDB去dump可疑内存

因为使用strace没有追踪到可疑内存申请于是想着看看内存中的情况。就是直接使用命令gdp -pid pid进入GDB之后然后使用命令dump memory mem.bin startAddress endAddressdump内存其中startAddress和endAddress可以从/proc/pid/smaps中查找。然后使用strings mem.bin查看dump的内容如下

gperftools监控

从内容上来看像是解压后的JAR包信息。读取JAR包信息应该是在项目启动的时候那么在项目启动之后使用strace作用就不是很大了。所以应该在项目启动的时候使用strace而不是启动完成之后。

再次项目启动时使用strace去追踪系统调用

项目启动使用strace追踪系统调用发现确实申请了很多64M的内存空间截图如下

strace监控

使用该mmap申请的地址空间在pmap对应如下

strace申请内容对应的pmap地址空间

最后使用jstack去查看对应的线程

因为strace命令中已经显示申请内存的线程ID。直接使用命令jstack pid去查看线程栈找到对应的线程栈注意10进制和16进制转换如下

strace申请空间的线程栈

这里基本上就可以看出问题来了MCC美团统一配置中心使用了Reflections进行扫包底层使用了Spring Boot去加载JAR。因为解压JAR使用Inflater类需要用到堆外内存然后使用Btrace去追踪这个类栈如下

btrace追踪栈

然后查看使用MCC的地方发现没有配置扫包路径默认是扫描所有的包。于是修改代码配置扫包路径发布上线后内存问题解决。

3. 为什么堆外内存没有释放掉呢

虽然问题已经解决了但是有几个疑问

  • 为什么使用旧的框架没有问题

  • 为什么堆外内存没有释放

  • 为什么内存大小都是64MJAR大小不可能这么大而且都是一样大

  • 为什么gperftools最终显示使用的的内存大小是700M左右解压包真的没有使用malloc申请内存吗

带着疑问笔者直接看了一下Spring Boot Loader那一块的源码。发现Spring Boot对Java JDK的InflaterInputStream进行了包装并且使用了Inflater而Inflater本身用于解压JAR包的需要用到堆外内存。而包装之后的类ZipInflaterInputStream没有释放Inflater持有的堆外内存。于是笔者以为找到了原因立马向Spring Boot社区反馈了这个bug。但是反馈之后笔者就发现Inflater这个对象本身实现了finalize方法在这个方法中有调用释放堆外内存的逻辑。也就是说Spring Boot依赖于GC释放堆外内存。

笔者使用jmap查看堆内对象时发现已经基本上没有Inflater这个对象了。于是就怀疑GC的时候没有调用finalize。带着这样的怀疑笔者把Inflater进行包装在Spring Boot Loader里面替换成自己包装的Inflater在finalize进行打点监控结果finalize方法确实被调用了。于是笔者又去看了Inflater对应的C代码发现初始化的使用了malloc申请内存end的时候也调用了free去释放内存。

此刻笔者只能怀疑free的时候没有真正释放内存便把Spring Boot包装的InflaterInputStream替换成Java JDK自带的发现替换之后内存问题也得以解决了。

这时再返过来看gperftools的内存分布情况发现使用Spring Boot时内存使用一直在增加突然某个点内存使用下降了好多使用量直接由3G降为700M左右。这个点应该就是GC引起的内存应该释放了但是在操作系统层面并没有看到内存变化那是不是没有释放到操作系统被内存分配器持有了呢

继续探究发现系统默认的内存分配器glibc 2.12版本和使用gperftools内存地址分布差别很明显2.5G地址使用smaps发现它是属于Native Stack。内存地址分布如下

gperftools显示的内存地址分布

到此基本上可以确定是内存分配器在捣鬼搜索了一下glibc 64M发现glibc从2.11开始对每个线程引入内存池64位机器大小就是64M内存原文如下

glib内存池说明

按照文中所说去修改MALLOC_ARENA_MAX环境变量发现没什么效果。查看tcmallocgperftools使用的内存分配器也使用了内存池方式。

为了验证是内存池搞的鬼笔者就简单写个不带内存池的内存分配器。使用命令gcc zjbmalloc.c -fPIC -shared -o zjbmalloc.so生成动态库然后使用export LD_PRELOAD=zjbmalloc.so替换掉glibc的内存分配器。其中代码Demo如下

#include<sys/mman.h>
#include<stdlib.h>
#include<string.h>
#include<stdio.h>
//作者使用的64位机器sizeof(size_t)也就是sizeof(long)
void* malloc ( size_t size )
{
   long* ptr = mmap( 0, size + sizeof(long), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0 );
   if (ptr == MAP_FAILED) {
  	return NULL;
   }
   *ptr = size;                     // First 8 bytes contain length.
   return (void*)(&ptr[1]);        // Memory that is after length variable
}

void *calloc(size_t n, size_t size) {
 void* ptr = malloc(n * size);
 if (ptr == NULL) {
	return NULL;
 }
 memset(ptr, 0, n * size);
 return ptr;
}
void *realloc(void *ptr, size_t size)
{
 if (size == 0) {
	free(ptr);
	return NULL;
 }
 if (ptr == NULL) {
	return malloc(size);
 }
 long *plen = (long*)ptr;
 plen--;                          // Reach top of memory
 long len = *plen;
 if (size <= len) {
	return ptr;
 }
 void* rptr = malloc(size);
 if (rptr == NULL) {
	free(ptr);
	return NULL;
 }
 rptr = memcpy(rptr, ptr, len);
 free(ptr);
 return rptr;
}

void free (void* ptr )
{
   if (ptr == NULL) {
	 return;
   }
   long *plen = (long*)ptr;
   plen--;                          // Reach top of memory
   long len = *plen;               // Read length
   munmap((void*)plen, len + sizeof(long));
}

通过在自定义分配器当中埋点可以发现其实程序启动之后应用实际申请的堆外内存始终在700M-800M之间gperftools监控显示内存使用量也是在700M-800M左右。但是从操作系统角度来看进程占用的内存差别很大这里只是监控堆外内存。

笔者做了一下测试使用不同分配器进行不同程度的扫包占用的内存如下

内存测试对比

为什么自定义的malloc申请800M最终占用的物理内存在1.7G呢

因为自定义内存分配器采用的是mmap分配内存mmap分配内存按需向上取整到整数个页所以存在着巨大的空间浪费。通过监控发现最终申请的页面数目在536k个左右那实际上向系统申请的内存等于512k * 4kpagesize = 2G。为什么这个数据大于1.7G呢

因为操作系统采取的是延迟分配的方式通过mmap向系统申请内存的时候系统仅仅返回内存地址并没有分配真实的物理内存。只有在真正使用的时候系统产生一个缺页中断然后再分配实际的物理Page。

总结

流程图

整个内存分配的流程如上图所示。MCC扫包的默认配置是扫描所有的JAR包。在扫描包的时候Spring Boot不会主动去释放堆外内存导致在扫描阶段堆外内存占用量一直持续飙升。当发生GC的时候Spring Boot依赖于finalize机制去释放了堆外内存但是glibc为了性能考虑并没有真正把内存归返到操作系统而是留下来放入内存池了导致应用层以为发生了“内存泄漏”。所以修改MCC的配置路径为特定的JAR包问题解决。笔者在发表这篇文章时发现Spring Boot的最新版本2.0.5.RELEASE已经做了修改在ZipInflaterInputStream主动释放了堆外内存不再依赖GC所以Spring Boot升级到最新版本这个问题也可以得到解决。

阿里云国内75折 回扣 微信号:monov8
阿里云国际,腾讯云国际,低至75折。AWS 93折 免费开户实名账号 代冲值 优惠多多 微信号:monov8 飞机:@monov6
标签: Spring