C++内存管理

阿里云国内75折 回扣 微信号:monov8
阿里云国际,腾讯云国际,低至75折。AWS 93折 免费开户实名账号 代冲值 优惠多多 微信号:monov8 飞机:@monov6

在这里插入图片描述

📌————本章重点————📌
🔗C/C++内存分布
🔗C语言中动态内存管理方式;
🔗operator new与operator delete函
🔗new和delete的实现原理
🔗定位new表达式(placement-new)
✨————————————✨

在这里插入图片描述

C/C++内存分布

我们先来看如下的相关代码

int globalVar = 1;
static int staticGlobalVar = 1;
void Test() {
	static int staticVar = 1;
	int localVar = 1;
	int num1[10] = { 1,2,3,4 };
	char char2[] = "abcd";
	const char* pChar3 = "abcd";
	int* ptr1 = (int*)malloc(sizeof(int) *4);
	int* ptr2 = (int*)calloc(4, sizeof(int));
	int* ptr3 = (int*)realloc(ptr2sizeof(int) * 4)
	free(ptr1);
	free(ptr3);
}

有以下几个问题
1.选择题:
选项: A.栈 B.堆 C.数据段(静态区) D.代码段(常量区)

globalVar在哪里? ____ staticGlobalVar在哪里? ____ staticVar在哪里?____
localVar在哪里?____ num1在哪里? ____ char2在哪里?____
*char 2在哪里?____ pChar3在哪里? ____ * pChar3在哪里?____
ptr1在哪里____ *ptr1在哪里____

在这里插入图片描述
2. 填空题

sizeof(num1) = ____;
sizeof(char2) = ____; strlen(char2) = ____;
sizeof(pChar3) = ____; strlen(pChar3) = ____;
sizeof(ptr1) = ____;

3.sizeof 和 strlen 区别
sizeof是关键字sizeof(X)统计的是X的大小单位是字节。 如X是数组则统计数组的大小(字符数组包含’\0’)若X是内置类型则计算内置类型的大小若X是指针变量则计算指针变量的大小等等。
strlen是库函数参数是一个指针用于求字符串长度遇到’\0’就停止不计算’\0’。

4.alloca、calloc、malloc、free、realloc区别

1.malloc分配的内存是位于堆中的,并且没有初始化内存的内容,因此基本上malloc之后,调用函数memset来初始化这部分的内存空间.
2.calloc则将初始化这部分的内存,设置为0.
3.realloc则对malloc申请的内存进行大小的调整.
void* malloc(unsigned size);
void* realloc(void* ptr, unsigned newsize);
void* calloc(size_t numElements, size_t sizeOfElement);

【说明】
1… 栈又叫堆栈–非静态局部变量/函数参数/返回值等等栈是向下增长的。
2… 内存映射段是高效的I/O映射方式用于装载一个共享的动态内存库。用户可使用系统接口创建共享共享内存做进程间通信。Linux课程如果没学到这块现在只需要了解一下
3… 堆用于程序运行时动态内存分配堆是可以上增长的。
4… 数据段–存储全局数据和静态数据。
5… 代码段–可执行的代码/只读常量。

C语言中动态内存管理方式malloc/calloc/realloc/free

void Test ()
{
 int* p1 = (int*) malloc(sizeof(int));
 free(p1);
 
 // 1.malloc/calloc/realloc的区别是什么

 int* p2 = (int*)calloc(4, sizeof (int));
 int* p3 = (int*)realloc(p2, sizeof(int)*10);
 
 // 这里需要free(p2)吗

 free(p3 );
}

malloc/calloc/realloc的区别

malloc/calloc/realloc底层实现原理

C++内存管理方式

C语言内存管理方式在C++中可以继续使用但有些地方就无能为力而且使用起来比较麻烦因此C++又提出了自己的内存管理方式通过new和delete操作符进行动态内存管理。

new/delete操作内置类型

单个字符类型采取new T .delete T;字符串new T[N ],delete T[ ];

void Test()
{
	// 动态申请一个int类型的空间

	int* ptr4 = new int;

	// 动态申请一个int类型的空间并初始化为10

	int* ptr5 = new int(10);

	// 动态申请10个int类型的空间

	int* ptr6 = new int[3];

	delete ptr4;
	delete ptr5;
	delete[] ptr6;
}

注意申请和释放单个元素的空间使用new和delete操作符申请和释放连续的空间使用new[]和delete[]注意匹配起来使用,不能混用否则可能造成空间泄露或者程序崩溃。

new和delete操作自定义类型

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}
	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};
int main()
{
	// new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数

	A* p1 = (A*)malloc(sizeof(A));
	A* p2 = new A(1);
	free(p1);
	delete p2;
	// 内置类型是几乎是一样的
	int* p3 = (int*)malloc(sizeof(int)); // C
	int* p4 = new int;
	free(p3);
	delete p4;
	A* p5 = (A*)malloc(sizeof(A) * 10);
	A* p6 = new A[10];
	free(p5);
	delete[] p6;
	return 0;
}

注意在申请自定义类型的空间时new会调用构造函数delete会调用析构函数而malloc与free不会。

operator new与operator delete函数

new和delete是用户进行动态内存申请和释放的操作符operator new 和operator delete是系统提供的全局函数new在底层调用operator new全局函数来申请空间delete在底层通过operator delete全局函数来释放空间。

/*
operator new该函数实际通过malloc来申请空间当malloc申请空间成功时直接返回申请空间失败
尝试执行空 间不足应对措施如果改应对措施用户设置了则继续申请否则抛异常。
*/
void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
	// try to allocate size bytes
	void* p;
	while ((p = malloc(size)) == 0)
		if (_callnewh(size) == 0)//空间不足应对的检测
		{
			// report no memory
			// 如果申请内存失败了这里会抛出bad_alloc 类型异常
			static const std::bad_alloc nomem;
			_RAISE(nomem);
		}
	return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void* pUserData)
{
	_CrtMemBlockHeader* pHead;

	RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
	if (pUserData == NULL)
		return;
	_mlock(_HEAP_LOCK); /* block other threads*/
	__TRY
		/* get a pointer to memory block header*/
		pHead = pHdr(pUserData);
		/* verify block type */
	_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
	_free_dbg(pUserData, pHead->nBlockUse);
	__FINALLY
		_munlock(_HEAP_LOCK); /* release other threads */
	__END_TRY_FINALLY
		return;
}
/*
free的实现

*/

#define free(p) _free_dbg(p, _NORMAL_BLOCK)

通过上述两个全局函数的实现知道operator new 实际也是通过malloc来申请空间如果malloc申请空间
成功就直接返回否则执行用户提供的空间不足应对措施如果用户提供该措施就继续申请否则就抛异
常。operator delete 最终是通过free来释放空间的。

重载operator new与operator delete

注意一般情况下不需要对 operator new 和 operator delete进行重载除非在申请和释放空间时候有某些
特殊的需求。比如在使用new和delete申请和释放空间时打印一些日志信息可以简单帮助用户来检测是否存在内存泄漏。

// 重载operator delete在申请空间时打印在哪个文件、哪个函数、第多少行申请了多少个字节

void* operator new(size_t size, const char* fileName, const char* funcName, size_t

	lineNo)
{
	void* p = ::operator new(size);
	cout << fileName << "-" << funcName << "-" << lineNo << "-" << p << "-" << size <<

		endl;
	return p;
}


// 重载operator delete在释放空间时打印再那个文件、哪个函数、第多少行释放

void operator delete(void* p, const char* fileName, const char* funcName, size_t

	lineNo)
{
	cout << fileName << "-" << funcName << "-" << lineNo << "-" << p << endl;
	::operator delete(p);
}


int main()
{
	// 对重载的operator new 和 operator delete进行调用

	int* p = new(__FILE__, __FUNCTION__, __LINE__) int;
	operator delete(p, __FILE__, __FUNCTION__, __LINE__);
	return 0;
}

// 上述调用显然太麻烦了可以使用宏对调用进行简化
// 只有在Debug方式下才调用用户重载的 operator new 和 operator delete

#ifdef _DEBUG
#define new new(__FILE__, __FUNCTION__, __LINE__)
#define delete(p) operator delete(p, __FILE__, __FUNCTION__, __LINE__)
#endif

int main()
{
	int* p = new int;
	delete(p);
	return 0;
}

new和delete的实现原理

内置类型

如果申请的是内置类型的空间new和mallocdelete和free基本类似不同的地方是new/delete申请和释放的是单个元素的空间new[]和delete[]申请的是连续空间而且new在申请空间失败时会抛异常malloc会返回NULL。

自定义类型

new的原理

  1. 调用operator new函数申请空间

  2. 在申请的空间上执行构造函数完成对象的构造

delete的原理

  1. 在空间上执行析构函数完成对象中资源的清理工作

  2. 调用operator delete函数释放对象的空间

3.对于自定义类型和内置类型来说:内置类型是直接调用operator delete函数释放对象的空间自定义类型是先调用析构函数再调用operator delete函数释放空间。

new T[N]的原理

  1. 调用operator new[]函数在operator new[]中实际调用operator new函数完成N个对象空间的申请

  2. 在申请的空间上执行N次构造函数

delete[]的原理

  1. 在释放的对象空间上执行N次析构函数完成N个对象中资源的清理

  2. 调用operator delete[]释放空间实际在operator delete[]中调用operator delete来释放空间

注意我们这里可以更深刻的明白构造函数不负责给对象开辟空间只负责将空间中的成员函数初始化

1.栈上的对象—>栈上的对象存储在系统给函数分配的栈帧中编译器编译时函数栈帧总的大小已经计算出来了当程序运行时系统将栈帧分配好对象的空间已经存在了程序执行到创建对象的位置时只需要调用构造方法将对象中的成员初始化好即可
2.堆上的对象—> new T…
a.调用operator new申请空间
b. 调用构造方法完成空间中成员的初始化

new操作符和操作符new区别:

new操作符:指的是用来申请空间的new关键字new即是关键字(所以使用时不需要包含任何头文件new也是–个C++中的操作符即:new是可以重载的
操作符new:是一个函数void* operator new(size_ t size)

定位new表达式(placement-new)

定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。使用格式

new (place_address) type或者new (place_address) type(initializer-list)
place_address必须是一个指针initializer-list是类型的初始化列表
使用场景
定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化所以如果是自定义
类型的对象需要使用new的定义表达式进行显示调构造函数进行初始化。应用比如内存池开发的时候

class A
{
public:
	A(int a = 0)
		: _a(a)
	{
		cout << "A():" << this << endl;
	}
	~A()
	{
		cout << "~A():" << this << endl;
	}
private:
	int _a;
};// 定位new/replacement new
int main()
{
	// p1现在指向的只不过是与A对象相同大小的一段空间还不能算是一个对象因为构造函数没有执行
	A* p1 = (A*)malloc(sizeof(A));
	new(p1)A; // 注意如果A类的构造函数有参数时此处需要传参
	p1->~A();
	free(p1);
	A* p2 = (A*)operator new(sizeof(A));
	new(p2)A(10);
	p2->~A();
	operator delete(p2);
	return 0;
}

注意与常见面试题

malloc/free和new/delete的区别

malloc/free和new/delete的共同点是都是从堆上申请空间并且需要用户手动释放。不同的地方是

  1. malloc和free是函数new和delete是操作符

  2. malloc申请的空间不会初始化new可以初始化

  3. malloc申请空间时需要手动计算空间大小并传递new只需在其后跟上空间的类型即可 如果是多个对象[ ]中指定对象个数即可

  4. malloc的返回值为void*, 在使用时必须强转new不需要因为new后跟的是空间的类型

  5. malloc申请空间失败时返回的是NULL因此使用时必须判空new不需要但是new需要捕获异常

  6. 申请自定义类型对象时malloc/free只会开辟空间不会调用构造函数与析构函数而new在申请空间 后会调用构造函数完成对象的初始化delete在释放空间前会调用析构函数完成空间中资源的清理

内存泄漏

什么是内存泄漏内存泄漏的危害 ?

什么是内存泄漏内存泄漏指因为疏忽或错误造成程序未能释放已经不再使用的内存的情况。内存泄漏并不是指内存在物理上的消失而是应用程序分配某段内存后因为设计错误失去了对该段内存的控制因而造成了内存的浪费。
内存泄漏的危害长期运行的程序出现内存泄漏影响很大如操作系统、后台服务等等出现内存泄漏会
导致响应越来越慢最终卡死。

内存泄漏分类
C/C++程序中一般我们关心两种方面的内存泄漏
堆内存泄漏(Heap leak)
堆内存指的是程序执行中依据须要分配通过malloc / calloc / realloc / new等从堆中分配的一块内存用完后必须通过调用相应的 free或者delete 删掉。假设程序的设计错误导致这部分内存没有被释放那么以后这部分空间将无法再被使用就会产生Heap Leak。
系统资源泄漏
指程序使用系统分配的资源比方套接字、文件描述符、管道等没有使用对应的函数释放掉导致系统资源的浪费严重可导致系统效能减少系统执行不稳定。

 void MemoryLeaks()
 {
 // 1.内存申请了忘记释放

 int* p1 = (int*)malloc(sizeof(int));
 int* p2 = new int;
 
 // 2.异常安全问题

 int* p3 = new int[10];
 
 Func(); // 这里Func函数抛异常导致 delete[] p3未执行p3没被释放.

 
 delete[] p3;
 }

如何检测内存泄漏

在vs下可以使用windows操作系统提供的_CrtDumpMemoryLeaks() 函数进行简单检测该函数只报出
了大概泄漏了多少个字节没有其他更准确的位置信息。因此写代码时一定要小心尤其是动态内存操作时**一定要记着释放。**但有些情况下总是防不胜防简单的可以采用上述方式快速定位下。如果工程比较大内存泄漏位置比较多不太好查时一般都是借助第三方内存泄漏检测工具处理的。

int main()
{
	int* p = new int[10];

	// 将该函数放在main函数之后每次程序退出的时候就会检测是否存在内存泄漏

	_CrtDumpMemoryLeaks();
	return 0;
}



// 程序退出后在输出窗口中可以检测到泄漏了多少字节但是没有具体的位置

Detected memory leaks!

Dumping objects ->

{79} normal block at 0x00EC5FB8, 40 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD

Object dump complete.

如何避免内存泄漏

  1. 工程前期良好的设计规范养成良好的编码规范申请的内存空间记着匹配的去释放。ps这个理想状态。但是如果碰上异常时就算注意释放了还是可能会出问题。需要下一条智能指针来管理才有保证。

  2. 采用RAII思想或者智能指针来管理资源。

  3. 有些公司内部规范使用内部实现的私有内存管理库。这套库自带内存泄漏检测的功能选项。

  4. 出问题了使用内存泄漏工具检测。ps不过很多工具都不够靠谱或者收费昂贵。

总结一下:
内存泄漏非常常见解决方案分为两种1、事前预防型。如智能指针等。2、事后查错型。如泄漏检测工具。

如何一次在堆上申请4G的内存

因为32位的环境下虚拟地址空间的大小只有4g而光内核空间就需要1g所以不可能申请得到只有在64位的环境下才可以实现只需要把执行环境改为64x即可

#include <iostream>
using namespace std;
 
int main()
{
 void* p = new char[0xfffffffful];
 cout << "new:" << p << endl;
 
 return 0;
}

在这里插入图片描述

阿里云国内75折 回扣 微信号:monov8
阿里云国际,腾讯云国际,低至75折。AWS 93折 免费开户实名账号 代冲值 优惠多多 微信号:monov8 飞机:@monov6
标签: c++