Linux6.31 Kubernetes 二进制部署

计算机系统

5G云计算

第二章 LINUX Kubernetes 部署

一、二进制搭建 Kubernetes v1.20

集群服务器主机名集群服务器IP集群服务器运行服务
k8s集群master01192.168.58.60kube-apiserver kube-controller-manager kube-scheduler etcd
k8s集群master02192.168.58.61
k8s集群node01192.168.58.62kubelet kube-proxy docker
k8s集群node02192.168.58.63
etcd集群节点1192.168.58.60etcd
etcd集群节点2192.168.58.62
etcd集群节点3192.168.58.63
负载均衡nginx+keepalive01master192.168.58.64
负载均衡nginx+keepalive02backup192.168.58.65
1.操作系统初始化配置
#关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X

#关闭selinux
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

#关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab 

#根据规划设置主机名
hostnamectl set-hostname master01
hostnamectl set-hostname master02
hostnamectl set-hostname node01
hostnamectl set-hostname node02

#在所有节点添加hosts
cat >> /etc/hosts << EOF
192.168.58.60 master01
192.168.58.61 master02
192.168.58.62 node01
192.168.58.63 node02
EOF

#调整内核参数
cat > /etc/sysctl.d/k8s.conf << EOF
#开启网桥模式可将网桥的流量传递给iptables链
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
#关闭ipv6协议
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
EOF

sysctl --system

#时间同步
yum install ntpdate -y
ntpdate time.windows.com
ntpdate ntp.aliyun.com

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.部署 etcd 集群

etcd是CoreOS团队于2013年6月发起的开源项目它的目标是构建一个高可用的分布式键值key-value数据库。etcd内部采用raft协议作为一致性算法etcd是go语言编写的

etcd 作为服务发现系统有以下的特点
简单安装配置简单而且提供了HTTP API进行交互使用也很简单
安全支持SSL证书验证
快速单实例支持每秒2k+读操作
可靠采用raft算法实现分布式系统数据的可用性和一致性

etcd 目前默认使用2379端口提供HTTP API服务 2380端口和peer通信(这两个端口已经被IANA(互联网数字分配机构)官方预留给etcd)。 即etcd默认使用2379端口对外为客户端提供通讯使用端口2380来进行服务器间内部通讯
etcd 在生产环境中一般推荐集群方式部署。由于etcd 的leader选举机制要求至少为3台或以上的奇数

---------- 准备签发证书环境 ----------
CFSSL 是 CloudFlare 公司开源的一款 PKI/TLS 工具。 CFSSL 包含一个命令行工具和一个用于签名、验证和捆绑 TLS 证书的 HTTP API 服务。使用Go语言编写。
CFSSL 使用配置文件生成证书因此自签之前需要生成它识别的 json 格式的配置文件CFSSL 提供了方便的命令行生成配置文件。
CFSSL 用来为 etcd 提供 TLS 证书它支持签三种类型的证书
1、client 证书服务端连接客户端时携带的证书用于客户端验证服务端身份如 kube-apiserver 访问 etcd
2、server 证书客户端连接服务端时携带的证书用于服务端验证客户端身份如 etcd 对外提供服务
3、peer 证书相互之间连接时使用的证书如 etcd 节点之间进行验证和通信。
这里全部都使用同一套证书认证。


//在 master01 节点上操作

#准备cfssl证书生成工具
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo

chmod +x /usr/local/bin/cfssl*
------------------------------------------------------------------------------------------
cfssl证书签发的工具命令
cfssljson将 cfssl 生成的证书json格式变为文件承载式证书
cfssl-certinfo验证证书的信息
cfssl-certinfo -cert <证书名称>			#查看证书的信息
------------------------------------------------------------------------------------------

### 生成Etcd证书 ###
mkdir /opt/k8s
cd /opt/k8s/

#上传 etcd-cert.sh 和 etcd.sh 到 /opt/k8s/ 目录中
chmod +x etcd-cert.sh etcd.sh

#创建用于生成CA证书、etcd 服务器证书以及私钥的目录
mkdir /opt/k8s/etcd-cert
mv etcd-cert.sh etcd-cert/
cd /opt/k8s/etcd-cert/
./etcd-cert.sh			#生成CA证书、etcd 服务器证书以及私钥

ls
ca-config.json  ca-csr.json  ca.pem        server.csr       server-key.pem
ca.csr          ca-key.pem   etcd-cert.sh  server-csr.json  server.pem

#上传 etcd-v3.4.9-linux-amd64.tar.gz 到 /opt/k8s 目录中启动etcd服务
cd /opt/k8s/
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
ls etcd-v3.4.9-linux-amd64
Documentation  etcd  etcdctl  README-etcdctl.md  README.md  READMEv2-etcdctl.md
------------------------------------------------------------------------------------------
etcd就是etcd 服务的启动命令后面可跟各种启动参数
etcdctl主要为etcd 服务提供了命令行操作
------------------------------------------------------------------------------------------

#创建用于存放 etcd 配置文件命令文件证书的目录
mkdir -p /opt/etcd/{cfg,bin,ssl}

cd /opt/k8s/etcd-v3.4.9-linux-amd64/
mv etcd etcdctl /opt/etcd/bin/
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/

cd /opt/k8s/
./etcd.sh etcd01 192.168.58.60 etcd02=https://192.168.58.62:2380,etcd03=https://192.168.58.63:2380
#进入卡住状态等待其他节点加入这里需要三台etcd服务同时启动如果只启动其中一台后服务会卡在那里直到集群中所有etcd节点都已启动可忽略这个情况

#可另外打开一个窗口查看etcd进程是否正常
ps -ef | grep etcd

#把etcd相关证书文件、命令文件和服务管理文件全部拷贝到另外两个etcd集群节点
scp -r /opt/etcd/ root@192.168.58.62:/opt/
scp -r /opt/etcd/ root@192.168.58.63:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.58.62:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.58.63:/usr/lib/systemd/system/

//在 node01 节点上操作
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd02"											#修改
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.58.62:2380"			#修改
ETCD_LISTEN_CLIENT_URLS="https://192.168.58.62:2379"		#修改

#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.58.62:2380"		#修改
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.58.62:2379"				#修改
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.58.60:2380,etcd02=https://192.168.58.62:2380,etcd03=https://192.168.58.63:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"

#启动etcd服务
systemctl start etcd
systemctl enable etcd
systemctl status etcd

//在 node02 节点上操作
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd03"											#修改
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.58.63:2380"			#修改
ETCD_LISTEN_CLIENT_URLS="https://192.168.58.63:2379"		#修改

#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.58.63:2380"		#修改
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.58.63:2379"				#修改
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.58.60:2380,etcd02=https://192.168.58.62:2380,etcd03=https://192.168.58.63:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"

#启动etcd服务
systemctl start etcd
systemctl enable etcd
systemctl status etcd

#检查etcd群集状态
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.58.60:2379,https://192.168.58.62:2379,https://192.168.58.63:2379" endpoint health --write-out=table

------------------------------------------------------------------------------------------
--cert-file识别HTTPS端使用SSL证书文件
--key-file使用此SSL密钥文件标识HTTPS客户端
--ca-file使用此CA证书验证启用https的服务器的证书
--endpoints集群中以逗号分隔的机器地址列表
cluster-health检查etcd集群的运行状况
------------------------------------------------------------------------------------------

#查看etcd集群成员列表
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.58.60:2379,https://192.168.58.62:2379,https://192.168.58.63:2379" --write-out=table member list

#备份还原etcd
ETCDCTL_ API=3 /opt/etcd/bin/etcdctl --endpoints="https://192.168.58.60:2379" --cacert=/opt/etcd/ ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem snapshot save /data/backup/etcd-snapshot.db

ETCDCTL_ API=3 /opt/etcd/bin/etcdctl --endpoints="https://192.168.58.60:2379" --cacert=/opt/etcd/ ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/ server-key.pem snapshot status /data/backup/etcd-snapshot.db -wtable

ETCDCTL_ API=3 /opt/etcd/bin/etcdctl --endpoints="https://192.168.58.60:2379" --cacert=/opt/etcd/ ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem snapshot restore /data/backup/etcd-snapshot.db

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.Kubernetes 集群架构与组件
//所有 node 节点部署docker引擎
yum install -y yum-utils device-mapper-persistent-data lvm2 
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 
yum install -y docker-ce docker-ce-cli containerd.io

vim /etc/docker/daemon.json
{
  "registry-mirrors": ["https://1vrc9itm.mirror.aliyuncs.com"],
  "exec-opts": ["native.cgroupdriver=systemd"],
  "log-driver": "json-file",
  "log-opts": {
    "max-size": "500m", "max-file": "3"
  }
}

systemctl start docker.service
systemctl enable docker.service 

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.部署 Master 组件
//在 master01 节点上操作
#上传 master.zip 和 k8s-cert.sh 到 /opt/k8s 目录中解压 master.zip 压缩包
cd /opt/k8s/
unzip master.zip
chmod +x *.sh

#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

#创建用于生成CA证书、相关组件的证书和私钥的目录
mkdir /opt/k8s/k8s-cert
mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
cd /opt/k8s/k8s-cert/
./k8s-cert.sh				#生成CA证书、相关组件的证书和私钥

ls *pem
admin-key.pem  apiserver-key.pem  ca-key.pem  kube-proxy-key.pem  
admin.pem      apiserver.pem      ca.pem      kube-proxy.pem

#复制CA证书、apiserver相关证书和私钥到 kubernetes工作目录的 ssl 子目录中
cp ca*pem apiserver*pem /opt/kubernetes/ssl/

#上传 kubernetes-server-linux-amd64.tar.gz 到 /opt/k8s/ 目录中解压 kubernetes 压缩包
cd /opt/k8s/
tar zxvf kubernetes-server-linux-amd64.tar.gz

#复制master组件的关键命令文件到 kubernetes工作目录的 bin 子目录中
cd /opt/k8s/kubernetes/server/bin
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
ln -s /opt/kubernetes/bin/* /usr/local/bin/

#创建 bootstrap token 认证文件apiserver 启动时会调用然后就相当于在集群内创建了一个这个用户接下来就可以用 RBAC 给他授权
cd /opt/k8s/
vim token.sh
#!/bin/bash
#获取随机数前16个字节内容以十六进制格式输出并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
#生成 token.csv 文件按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF

chmod +x token.sh
./token.sh

cat /opt/kubernetes/cfg/token.csv

#二进制文件、token、证书都准备好后开启 apiserver 服务
cd /opt/k8s/
./apiserver.sh 192.168.58.60 https://192.168.58.60:2379,https://192.168.58.62:2379,https://192.168.58.63:2379

#检查进程是否启动成功
ps aux | grep kube-apiserver

netstat -natp | grep 6443   #安全端口6443用于接收HTTPS请求用于基于Token文件或客户端证书等认证


#启动 scheduler 服务
cd /opt/k8s/
./scheduler.sh
ps aux | grep kube-scheduler

#启动 controller-manager 服务
./controller-manager.sh
ps aux | grep kube-controller-manager

#生成kubectl连接集群的kubeconfig文件
./admin.sh

#绑定默认cluster-admin管理员集群角色授权kubectl访问集群
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

#通过kubectl工具查看当前集群组件状态
kubectl get cs
Warning: v1 ComponentStatus is deprecated in v1.19+
NAME                 STATUS    MESSAGE             ERROR
scheduler            Healthy   ok                  
controller-manager   Healthy   ok                  
etcd-1               Healthy   {"health":"true"}   
etcd-2               Healthy   {"health":"true"}   
etcd-0               Healthy   {"health":"true"}   

#查看版本信息
kubectl version

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.部署 Worker Node 组件
//在所有 node 节点上操作
#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

#上传 node.zip 到 /opt 目录中解压 node.zip 压缩包获得kubelet.sh、proxy.sh
cd /opt/
unzip node.zip
chmod +x kubelet.sh proxy.sh

//在 master01 节点上操作
#把 kubelet、kube-proxy 拷贝到 node 节点
cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@192.168.58.62:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.58.63:/opt/kubernetes/bin/

#上传kubeconfig.sh文件到/opt/k8s/kubeconfig目录中生成kubelet初次加入集群引导kubeconfig文件和kube-proxy.kubeconfig文件
#kubeconfig 文件包含集群参数CA 证书、API Server 地址客户端参数上面生成的证书和私钥集群 context 上下文参数集群名称、用户名。Kubenetes 组件如 kubelet、kube-proxy通过启动时指定不同的 kubeconfig 文件可以切换到不同的集群连接到 apiserver。
mkdir /opt/k8s/kubeconfig

cd /opt/k8s/kubeconfig
chmod +x kubeconfig.sh
./kubeconfig.sh 192.168.58.60 /opt/k8s/k8s-cert/

#把配置文件 bootstrap.kubeconfig、kube-proxy.kubeconfig 拷贝到 node 节点
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.58.62:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.58.63:/opt/kubernetes/cfg/

#RBAC授权使用户 kubelet-bootstrap 能够有权限发起 CSR 请求证书
kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap

#自动批准CSR 请求证书
kubectl create clusterrolebinding node-autoapprove-bootstrap --clusterrole=system:certificates.k8s.io:certificatesigningrequests:nodeclient --user=kubelet-bootstrap 

kubectl create clusterrolebinding node-autoapprove-certificate-rotation --clusterrole=system:certificates.k8s.io:certificatesigningrequests:selfnodeclient --user=kubelet-bootstrap

-----------------------------------------------------------------
kubelet 采用 TLS Bootstrapping 机制自动完成到 kube-apiserver 的注册在 node 节点量较大或者后期自动扩容时非常有用。
Master apiserver 启用 TLS 认证后node 节点 kubelet 组件想要加入集群必须使用CA签发的有效证书才能与 apiserver 通信当 node 节点很多时签署证书是一件很繁琐的事情。因此 Kubernetes 引入了 TLS bootstraping 机制来自动颁发客户端证书kubelet 会以一个低权限用户自动向 apiserver 申请证书kubelet 的证书由 apiserver 动态签署。

kubelet 首次启动通过加载 bootstrap.kubeconfig 中的用户 Token 和 apiserver CA 证书发起首次 CSR 请求这个 Token 被预先内置在 apiserver 节点的 token.csv 中其身份为 kubelet-bootstrap 用户和 system:kubelet-bootstrap 用户组想要首次 CSR 请求能成功即不会被 apiserver 401 拒绝则需要先创建一个 ClusterRoleBinding将 kubelet-bootstrap 用户和 system:node-bootstrapper 内置 ClusterRole 绑定通过 kubectl get clusterroles 可查询使其能够发起 CSR 认证请求。

TLS bootstrapping 时的证书实际是由 kube-controller-manager 组件来签署的也就是说证书有效期是 kube-controller-manager 组件控制的kube-controller-manager 组件提供了一个 --experimental-cluster-signing-duration 参数来设置签署的证书有效时间默认为 8760h0m0s将其改为 87600h0m0s即 10 年后再进行 TLS bootstrapping 签署证书即可。

也就是说 kubelet 首次访问 API Server 时是使用 token 做认证通过后Controller Manager 会为 kubelet 生成一个证书以后的访问都是用证书做认证了。
-----------------------------------------------------------------


//在 node01 节点上操作
#启动 kubelet 服务
cd /opt/
./kubelet.sh 192.168.58.62
ps aux | grep kubelet

//在 master01 节点上操作通过 CSR 请求
#检查到 node01 节点的 kubelet 发起的 CSR 请求Pending 表示等待集群给该节点签发证书
kubectl get csr
NAME                                                   AGE   SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-i2iTDLZpDUlxoJHvUzB0rA-2dAWfV2YouTMNIuEIMGo   37s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending

#通过 CSR 请求
kubectl certificate approve node-csr-i2iTDLZpDUlxoJHvUzB0rA-2dAWfV2YouTMNIuEIMGo

#Approved,Issued 表示已授权 CSR 请求并签发证书
kubectl get csr
NAME                                                   AGE  SIGNERNAME                                    REQUESTOR           CONDITION
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE   2m5s kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued

#查看节点由于网络插件还没有部署节点会没有准备就绪 NotReady
kubectl get node
NAME            STATUS     ROLES    AGE    VERSION
192.168.58.62   NotReady   <none>   108s   v1.20.11

//在 node01 节点上操作
#加载 ip_vs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do modprobe $i;done

#启动proxy服务
cd /opt/
./proxy.sh 192.168.58.62
ps aux | grep kube-proxy

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.部署 CNI 网络组件——部署 flannel
1K8S 中 Pod 网络通信

Pod 内容器与容器之间的通信
在同一个 Pod 内的容器Pod 内的容器是不会跨宿主机的共享同一个网络命令空间相当于它们在同一台机器上一样可以用 localhost 地址访问彼此的端口

同一个 Node 内 Pod 之间的通信
每个 Pod 都有一个真实的全局 IP 地址同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0 网桥网段相同所以它们之间可以直接通信

不同 Node 上 Pod 之间的通信
Pod 地址与 docker0 在同一网段docker0 网段与宿主机网卡是两个不同的网段且不同 Node 之间的通信只能通过宿主机的物理网卡进行
要想实现不同 Node 上 Pod 之间的通信就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件Pod 的 IP 不能冲突将 Pod 的 IP 和所在的 Node 的 IP 关联起来通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信

2Overlay Network

叠加网络在二层或者三层基础网络上叠加的一种虚拟网络技术模式该网络中的主机通过虚拟链路隧道连接起来类似于VPN

3VXLAN

将源数据包封装到UDP中并使用基础网络的IP/MAC作为外层报文头进行封装然后在以太网上传输到达目的地后由隧道端点解封装并将数据发送给目标地址

4Flannel

Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址
Flannel 是 Overlay 网络的一种也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信目前支持 udp、vxlan、 host-GW 3种数据转发方式

5Flannel udp 模式的工作原理

数据从 node01 上 Pod 的源容器中发出后经由所在主机的 docker0 虚拟网卡转发到 flannel.1 虚拟网卡flanneld 服务监听在 flannel.1 虚拟网卡的另外一端
Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 node01 的 flanneld 服务将原本的数据内容封装到 UDP 中后根据自己的路由表通过物理网卡投递给目的节点 node02 的 flanneld 服务数据到达以后被解包然后直接进入目的节点的 flannel.1 虚拟网卡之后被转发到目的主机的 docker0 虚拟网卡最后就像本机容器通信一样由 docker0 转发到目标容器

6ETCD 之 Flannel 提供说明

存储管理Flannel可分配的IP地址段资源
监控 ETCD 中每个 Pod 的实际地址并在内存中建立维护 Pod 节点路由表

由于 udp 模式是在用户态做转发会多一次报文隧道封装因此性能上会比在内核态做转发的 vxlan 模式差。

7vxlan 模式

vxlan 是一种overlay虚拟隧道通信技术通过三层网络搭建虚拟的二层网络跟 udp 模式具体实现不太一样:
1udp模式是在用户态实现的数据会先经过tun网卡到应用程序应用程序再做隧道封装再进一次内核协议栈而vxlan是在内核当中实现的只经过一次协议栈在协议栈内就把vxlan包组装好
2udp模式的tun网卡是三层转发使用tun是在物理网络之上构建三层网络属于ip in udpvxlan模式是二层实现 overlay是二层帧属于mac in udp
3vxlan由于采用mac in udp的方式所以实现起来会涉及mac地址学习arp广播等二层知识udp模式主要关注路由

8Flannel vxlan 模式的工作原理

vxlan在内核当中实现当数据包使用vxlan设备发送数据时会打上vlxan的头部信息在发送出去对端解包flannel.1网卡把原始报文发送到目的服务器

//在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar
docker load -i flannel-cni-plugin.tar
scp kube-flannel.yml 192.168.58.60:/opt/k8s

mkdir -p /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v1.3.0.tgz -C /opt/cni/bin
cd /opt/cni/bin/
ls
ps aux | grep flannel
ifconfig

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml 

kubectl get pods -A
NAMESPACE      NAME                    READY   STATUS    RESTARTS   AGE
kube-flannel   kube-flannel-ds-l5psk   1/1     Running   0          2m30s
kube-flannel   kube-flannel-ds-rnnm9   1/1     Running   0          2m30s

kubectl get nodes
NAME            STATUS   ROLES    AGE   VERSION
192.168.58.62   Ready    <none>   20h   v1.20.15
192.168.58.63   Ready    <none>   20h   v1.20.15

kubectl get pods -A -o wide
NAMESPACE      NAME                    READY   STATUS    RESTARTS   AGE    IP              NODE            NOMINATED NODE   READINESS GATES
kube-flannel   kube-flannel-ds-l5psk   1/1     Running   0          177m   192.168.58.63   192.168.58.63   <none>           <none>
kube-flannel   kube-flannel-ds-rnnm9   1/1     Running   0          177m   192.168.58.62   192.168.58.62   <none>           <none>

kubectl describe node 192.168.58.62

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7.部署 CNI 网络组件——部署 Calico
1k8s 组网方案对比

flannel方案
需要在每个节点上把发向容器的数据包进行封装后再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响

calico方案
Calico不使用隧道或NAT来实现转发而是把Host当作Internet中的路由器使用BGP同步路由并使用iptables来做安全访问策略完成跨Host转发来

2Calico 主要由三个部分组成

Calico CNI插件主要负责与kubernetes对接供kubelet调用使用
Felix负责维护宿主机上的路由规则、FIB转发信息库等
BIRD负责分发路由规则类似路由器
Confd配置管理组件

3Calico 工作原理

Calico 是通过路由表来维护每个 pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备 然后把另一端接入到宿主机网络空间由于没有网桥CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则用于接收传入的IP包。
有了这样的 veth pair 设备以后容器发出的IP包就会通过 veth pair 设备到达宿主机然后宿主机根据路由规则的下一跳地址 发送给正确的网关然后到达目标宿主机再到达目标容器。
这些路由规则都是 Felix 维护配置的而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。calico 实际上是将集群里所有的节点都当做边界路由器来处理他们一起组成了一个全互联的网络彼此之间通过 BGP 交换路由这些节点我们叫做 BGP Peer

目前比较常用的时flannel和calicoflannel的功能比较简单不具备复杂的网络策略配置能力calico是比较出色的网络管理插件但具备复杂网络配置能力的同时往往意味着本身的配置比较复杂所以相对而言比较小而简单的集群使用flannel考虑到日后扩容未来网络可能需要加入更多设备配置更多网络策略则使用calico更好

curl http://raw.githubusercontent.com/projectcalico/calico/v3.26.1/manifests/calico.yaml

//在 master01 节点上操作
#上传 calico.yaml 文件到 /opt/k8s 目录中部署 CNI 网络
cd /opt/k8s
vim calico.yaml
    #修改里面定义Pod网络CALICO_IPV4POOL_CIDR与前面kube-controller-manager配置文件指定的cluster-cidr网段一样
    - name: CALICO_IPV4POOL_CIDR
      value: "192.168.0.0/16"
    
    #修改网络模式为BGP
    - name CALICO_IPV4POOL_IPIP
      value: "Never"                          #设置为Never时为BGP模式设置为Always时为IPIP模式
       - name IP_AUTODETECTION_METHOD
      value: "interface=ens.*"

kubectl apply -f calico.yaml

kubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-4h8vk   1/1     Running   0          58s
calico-node-nsm6b                          1/1     Running   0          58s
calico-node-tdt8v                          1/1     Running   0          58s

#等 Calico Pod 都 Running节点也会准备就绪
kubectl get nodes

#修改网络模式为混合模式
kubectl edit ippool
ipipMode: Always 修改为 ipipMode: CrossSubnet
8.部署 CoreDNS
//在所有 node 节点上操作
#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar

//在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中部署 CoreDNS 
cd /opt/k8s
kubectl apply -f coredns.yaml

kubectl get pods -n kube-system 
NAME                       READY   STATUS    RESTARTS   AGE
coredns-7f8c5c6967-bv8p6   0/1     Running   0          6s

#DNS 解析测试
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local

Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local

若执行失败可先给kubectl绑定默认cluster-admin管理员集群角色授权集群操作权限
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous


---------- master02 节点部署 ----------
//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@192.168.58.61:/opt/
scp -r /opt/kubernetes/ root@192.168.58.61:/opt
scp -r /root/.kube/ root@192.168.58.61:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.58.61:/usr/lib/systemd/system/

//修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.58.60:2379,https://192.168.58.62:2379,https://192.168.58.63:2379 \
--bind-address=192.168.58.61 \				#修改
--secure-port=6443 \
--advertise-address=192.168.58.61 \			#修改
......

//在 master02 节点上启动各服务并设置开机自启
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

//查看node节点状态
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide			#-o=wide输出额外信息对于Pod将输出Pod所在的Node名
//此时在master02节点查到的node节点状态仅是从etcd查询到的信息而此时node节点实际上并未与master02节点建立通信连接因此需要使用一个VIP把node节点与master节点都关联起来

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

9.负载均衡部署
//配置load balancer集群双机热备负载均衡nginx实现负载均衡keepalived实现双机热备
##### 在lb01、lb02节点上操作 ##### 
//配置nginx的官方在线yum源配置本地nginx的yum源
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF

yum install nginx -y

//修改nginx配置文件配置四层反向代理负载均衡指定k8s群集2台master的节点ip和6443端口
vim /etc/nginx/nginx.conf
events {
    worker_connections  1024;
}

#添加
stream {
    log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
    
	access_log  /var/log/nginx/k8s-access.log  main;

    upstream k8s-apiserver {
        server 192.168.58.60:6443;
        server 192.168.58.61:6443;
    }
    server {
        listen 6443;
        proxy_pass k8s-apiserver;
    }
}

http {
......


//检查配置文件语法
nginx -t   

//启动nginx服务查看已监听6443端口
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 


//部署keepalived服务
yum install keepalived -y

//修改keepalived配置文件
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {
   # 接收邮件地址
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   # 邮件发送地址
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER	#lb01节点的为 NGINX_MASTERlb02节点的为 NGINX_BACKUP
}

#添加一个周期性执行的脚本
vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"	#指定检查nginx存活的脚本路径
}

vrrp_instance VI_1 {
    state MASTER			#lb01节点的为 MASTERlb02节点的为 BACKUP
    interface ens33			#指定网卡名称 ens33
    virtual_router_id 51	#指定vrid两个节点要一致
    priority 100			#lb01节点的为 100lb02节点的为 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.58.100/24	#指定 VIP
    }
    track_script {
        check_nginx			#指定vrrp_script配置的脚本
    }
}


//创建nginx状态检查脚本 
vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")

if [ "$count" -eq 0 ];then
    systemctl stop keepalived
fi


chmod +x /etc/nginx/check_nginx.sh

//启动keepalived服务一定要先启动了nginx服务再启动keepalived服务
systemctl start keepalived
systemctl enable keepalived
ip a				#查看VIP是否生成

//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP
cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.58.100:6443
                      
vim kubelet.kubeconfig
server: https://192.168.58.100:6443
                        
vim kube-proxy.kubeconfig
server: https://192.168.58.100:6443

//重启kubelet和kube-proxy服务
systemctl restart kubelet.service 
systemctl restart kube-proxy.service

//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态
netstat -natp | grep nginx
tcp        0      0 0.0.0.0:6443            0.0.0.0:*               LISTEN      22703/nginx: master 
tcp        0      0 0.0.0.0:80              0.0.0.0:*               LISTEN      22703/nginx: master 
tcp        0      0 192.168.58.64:34294     192.168.58.60:6443      ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.64:36136     192.168.58.61:6443      ESTABLISHED 22705/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.62:37694     ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.62:37696     ESTABLISHED 22705/nginx: worker 
tcp        0      0 192.168.58.64:34298     192.168.58.60:6443      ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.64:36126     192.168.58.61:6443      ESTABLISHED 22705/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.62:37692     ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.64:36134     192.168.58.61:6443      ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.63:57468     ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.63:57460     ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.63:57444     ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.62:37670     ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.64:34276     192.168.58.60:6443      ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.63:57464     ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.62:37686     ESTABLISHED 22705/nginx: worker 
tcp        0      0 192.168.58.64:36130     192.168.58.61:6443      ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.64:36140     192.168.58.61:6443      ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.63:57462     ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.64:36148     192.168.58.61:6443      ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.63:57466     ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.64:36144     192.168.58.61:6443      ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.63:57454     ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.64:36152     192.168.58.61:6443      ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.100:6443     192.168.58.62:37690     ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.64:34302     192.168.58.60:6443      ESTABLISHED 22704/nginx: worker 
tcp        0      0 192.168.58.64:34284     192.168.58.60:6443      ESTABLISHED 22704/nginx: worker 


##### 在 master01 节点上操作 ##### 
//测试创建pod
kubectl run nginx --image=nginx

//查看Pod的状态信息
kubectl get pods
NAME    READY   STATUS              RESTARTS   AGE
nginx   0/1     ContainerCreating   0          5s       #正在创建中

kubectl get pods
NAME    READY   STATUS    RESTARTS   AGE
nginx   1/1     Running   0          91s 	        #创建完成运行中

kubectl get pods -o wide
NAME    READY   STATUS    RESTARTS   AGE     IP           NODE            NOMINATED NODE   READINESS GATES
nginx   1/1     Running   0          6m45s   10.244.1.3   192.168.58.63   <none>           <none>
//READY为1/1表示这个Pod中有1个容器

//在对应网段的node节点上操作可以直接使用浏览器或者curl命令访问
curl 10.244.1.3

//这时在master01节点上查看nginx日志发现没有权限查看
kubectl logs nginx

若执行失败可先给kubectl绑定默认cluster-admin管理员集群角色授权集群操作权限
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

10.部署 Dashboard

Dashboard 介绍
仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群对容器化应用程序进行故障排除并管理集群本身及其伴随资源。您可以使用仪表板来概述群集上运行的应用程序以及创建或修改单个Kubernetes资源例如部署作业守护进程等。例如您可以使用部署向导扩展部署启动滚动更新重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息

//在 master01 节点上操作
#上传 recommended.yaml 文件到 /opt/k8s 目录中
cd /opt/k8s
vim recommended.yaml
#默认Dashboard只能集群内部访问修改Service为NodePort类型暴露到外部
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  ports:
    - port: 443
      targetPort: 8443
      nodePort: 30001     #添加
  type: NodePort          #添加
  selector:
    k8s-app: kubernetes-dashboard

kubectl apply -f recommended.yaml

#创建service account并绑定默认cluster-admin管理员集群角色
kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

#使用输出的token登录Dashboard
https://NodeIP:30001

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

阿里云国内75折 回扣 微信号:monov8
阿里云国际,腾讯云国际,低至75折。AWS 93折 免费开户实名账号 代冲值 优惠多多 微信号:monov8 飞机:@monov6
标签: linuxk8s