MAML-RL Pytorch 代码解读 (12) -- maml

阿里云国内75折 回扣 微信号:monov8
阿里云国际,腾讯云国际,低至75折。AWS 93折 免费开户实名账号 代冲值 优惠多多 微信号:monov8 飞机:@monov6

MAML-RL Pytorch 代码解读 (12) – maml_rl/envs/mujoco/ant.py

文章目录

基本介绍

在网上看到的元学习 MAML 的代码大多是跟图像相关的强化学习这边的代码比较少。

因为自己的思路跟 MAML-RL 相关所以打算读一些源码。

MAML 的原始代码是基于 tensorflow 的在 Github 上找到了基于 Pytorch 源码包学习这个包。

源码链接

https://github.com/dragen1860/MAML-Pytorch-RL

文件路径

./maml_rl/envs/mujoco/ant.py

import

import numpy as np
from gym.envs.mujoco import AntEnv as AntEnv_

AntEnv()

这个类应该是一个总类下面的变体都是在这个基础上变化的

class AntEnv(AntEnv_):
    
    #### @property是将被装饰的方法转化为一个同名的只读的特征属性被装饰方法的文档字符串就是装饰后同名属性的文档字符串且后面没有.setter和.deleter方法说明这个装饰器将self._action_scaling变只读了。如果自己的实例没有名字为'action_space'的属性那么返回1.0数值。如果self._action_scaling存在但是是None那么就返回动作空间的一半空间。
	@property
	def action_scaling(self):
		if not hasattr(self, 'action_space'):
			return 1.0
		if self._action_scaling is None:
			lb, ub = self.action_space.low, self.action_space.high
			self._action_scaling = 0.5 * (ub - lb)
		return self._action_scaling

	#### 获取mujoco仿真器的位姿、速度、归一化的接触摩擦力...?和两个关于自身身体的数值。最后打包装成了np数组。
    def _get_obs(self):
		return np.concatenate([
			self.sim.data.qpos.flat[2:],
			self.sim.data.qvel.flat,
			np.clip(self.sim.data.cfrc_ext, -1, 1).flat,
			self.sim.data.get_body_xmat("torso").flat,
			self.get_body_com("torso").flat,
		]).astype(np.float32).flatten()

    #### 构建仿真器内部的相机。先指定camera_id两款相机其中一款是固定的距离模型放置的0.35倍的距离
	def viewer_setup(self):
		camera_id = self.model.camera_name2id('track')
		self.viewer.cam.type = 2
		self.viewer.cam.fixedcamid = camera_id
		self.viewer.cam.distance = self.model.stat.extent * 0.35
		# Hide the overlay
		self.viewer._hide_overlay = True

    #### 用于渲染。如果采用的渲染模式是'rgb_array'那么从相机中渲染获得信息设置图片大小是500x500将图片转换成数据并返回。如果采用的渲染模式是'human'直接对仿真器渲染不需要获得信息。
	def render(self, mode='human'):
		if mode == 'rgb_array':
			self._get_viewer().render()
			# window size used for old mujoco-py:
			width, height = 500, 500
			data = self._get_viewer().read_pixels(width, height, depth=False)
			return data
		elif mode == 'human':
			self._get_viewer().render()

AntVelEnv()

class AntVelEnv(AntEnv):
    
   #### 这个类是具有目标速度的蚂蚁环境继承AntEnv()类。奖励函数由控制消耗、幸存奖励当前速度和目标速度之间的惩罚项。从均匀分布[0, 3]中采样目标速度。
   """Ant environment with target velocity, as described in [1]. The 
   code is adapted from
   https://github.com/cbfinn/maml_rl/blob/9c8e2ebd741cb0c7b8bf2d040c4caeeb8e06cc95/rllab/envs/mujoco/ant_env_rand.py

   The ant follows the dynamics from MuJoCo [2], and receives at each 
   time step a reward composed of a control cost, a contact cost, a survival 
   reward, and a penalty equal to the difference between its current velocity 
   and the target velocity. The tasks are generated by sampling the target 
   velocities from the uniform distribution on [0, 3].

   [1] Chelsea Finn, Pieter Abbeel, Sergey Levine, "Model-Agnostic 
      Meta-Learning for Fast Adaptation of Deep Networks", 2017 
      (https://arxiv.org/abs/1703.03400)
   [2] Emanuel Todorov, Tom Erez, Yuval Tassa, "MuJoCo: A physics engine for 
      model-based control", 2012 
      (https://homes.cs.washington.edu/~todorov/papers/TodorovIROS12.pdf)
   """

   #### 接受任务、任务的目标速度键值对、不进行归一化动作空间声明对父类的继承。
   def __init__(self, task={}):
      self._task = task
      self._goal_vel = task.get('velocity', 0.0)
      self._action_scaling = None
      super(AntVelEnv, self).__init__()

   def step(self, action):
    
      #### 从仿真器中获取蚂蚁的采取动作前的位置位姿xposbefore在仿真器中采用self.frame_skip帧率执行action动作后进行仿真从仿真器中获取蚂蚁的采取动作后的位置位姿xposafter
      xposbefore = self.get_body_com("torso")[0]
      self.do_simulation(action, self.frame_skip)
      xposafter = self.get_body_com("torso")[0]

      #### 前馈速度用速度公式求出来然后获得前馈的速度有关的奖励幸存奖励是0.05控制损失应该是一个幅度如果控制信号越大那么损失就越大接触摩擦力损失按公式计算。
      forward_vel = (xposafter - xposbefore) / self.dt
      forward_reward = -1.0 * np.abs(forward_vel - self._goal_vel) + 1.0
      survive_reward = 0.05
      ctrl_cost = 0.5 * 1e-2 * np.sum(np.square(action / self.action_scaling))
      contact_cost = 0.5 * 1e-3 * np.sum(
         np.square(np.clip(self.sim.data.cfrc_ext, -1, 1)))

      #### 从上一个类中获得位姿、接触摩擦力和其他一些从参数。计算奖励。self.state_vector()的意思是将蚂蚁的位姿[1]和速度[2]变成一个向量。如果状态信息都是有限值且速度在[0.2,1.0]的范围内那么就是没有完成notdone=True。反之就是完成了done=True。infos记录奖励信息。最后返回一个元组。
      observation = self._get_obs()
      reward = forward_reward - ctrl_cost - contact_cost + survive_reward
      state = self.state_vector()
      notdone = np.isfinite(state).all() \
                and state[2] >= 0.2 and state[2] <= 1.0
      done = not notdone
      infos = dict(reward_forward=forward_reward, reward_ctrl=-ctrl_cost,
                   reward_contact=-contact_cost, reward_survive=survive_reward,
                   task=self._task)
      return (observation, reward, done, infos)

   def sample_tasks(self, num_tasks):
      #### 从均匀分布[0.0,3.0]中采样num_tasks个任务在每个任务中记录键值对'velocity'和数值。
      velocities = self.np_random.uniform(0.0, 3.0, size=(num_tasks,))
      tasks = [{'velocity': velocity} for velocity in velocities]
      return tasks

   def reset_task(self, task):
      #### 重置任务。
      self._task = task
      self._goal_vel = task['velocity']

AntDirEnv()

class AntDirEnv(AntEnv):
    
    #### 这个类是具有目标方向的蚂蚁环境继承AntEnv()类。奖励函数由控制消耗、接触消耗、幸存奖励当前方向和目标方向之间的惩罚项。从{-1,1}=[0.5,0.5]中采样目标方向。
	"""Ant environment with target direction, as described in [1]. The 
	code is adapted from
	https://github.com/cbfinn/maml_rl/blob/9c8e2ebd741cb0c7b8bf2d040c4caeeb8e06cc95/rllab/envs/mujoco/ant_env_rand_direc.py

	The ant follows the dynamics from MuJoCo [2], and receives at each 
	time step a reward composed of a control cost, a contact cost, a survival 
	reward, and a reward equal to its velocity in the target direction. The 
	tasks are generated by sampling the target directions from a Bernoulli 
	distribution on {-1, 1} with parameter 0.5 (-1: backward, +1: forward).

	[1] Chelsea Finn, Pieter Abbeel, Sergey Levine, "Model-Agnostic 
		Meta-Learning for Fast Adaptation of Deep Networks", 2017 
		(https://arxiv.org/abs/1703.03400)
	[2] Emanuel Todorov, Tom Erez, Yuval Tassa, "MuJoCo: A physics engine for 
		model-based control", 2012 
		(https://homes.cs.washington.edu/~todorov/papers/TodorovIROS12.pdf)
	"""

    #### 接受任务、任务的目标方向键值对、不进行归一化动作空间声明对父类的继承。
	def __init__(self, task={}):
		self._task = task
		self._goal_dir = task.get('direction', 1)
		self._action_scaling = None
		super(AntDirEnv, self).__init__()

	def step(self, action):
        
        #### 从仿真器中获取蚂蚁的采取动作前的位置位姿xposbefore在仿真器中采用self.frame_skip帧率执行action动作后进行仿真从仿真器中获取蚂蚁的采取动作后的位置位姿xposafter
		xposbefore = self.get_body_com("torso")[0]
		self.do_simulation(action, self.frame_skip)
		xposafter = self.get_body_com("torso")[0]

        #### 前馈速度用速度公式求出来然后获得前馈的速度有关的奖励幸存奖励是0.05控制损失应该是一个幅度如果控制信号越大那么损失就越大接触摩擦力损失按公式计算。
		forward_vel = (xposafter - xposbefore) / self.dt
		forward_reward = self._goal_dir * forward_vel
		survive_reward = 0.05
		ctrl_cost = 0.5 * 1e-2 * np.sum(np.square(action / self.action_scaling))
		contact_cost = 0.5 * 1e-3 * np.sum(
			np.square(np.clip(self.sim.data.cfrc_ext, -1, 1)))

        #### 从上上一个类中获得位姿、接触摩擦力和其他一些从参数。计算奖励。self.state_vector()的意思是将蚂蚁的位姿[1]和速度[2]变成一个向量。如果状态信息都是有限值且速度在[0.2,1.0]的范围内那么就是没有完成notdone=True。反之就是完成了done=True。infos记录奖励信息。最后返回一个元组。
		observation = self._get_obs()
		reward = forward_reward - ctrl_cost - contact_cost + survive_reward
		state = self.state_vector()
		notdone = np.isfinite(state).all() \
		          and state[2] >= 0.2 and state[2] <= 1.0
		done = not notdone
		infos = dict(reward_forward=forward_reward, reward_ctrl=-ctrl_cost,
		             reward_contact=-contact_cost, reward_survive=survive_reward,
		             task=self._task)
		return (observation, reward, done, infos)

    #### 从伯努力分布中采样num_tasks个任务在每个任务中记录键值对'direction'和数值。
	def sample_tasks(self, num_tasks):
		directions = 2 * self.np_random.binomial(1, p=0.5, size=(num_tasks,)) - 1
		tasks = [{'direction': direction} for direction in directions]
		return tasks

	#### 重置任务。
    def reset_task(self, task):
		self._task = task
		self._goal_dir = task['direction']

AntPosEnv()

class AntPosEnv(AntEnv):
    
   #### 这个类是具有目标位置的蚂蚁环境继承AntEnv()类。奖励函数由控制消耗、接触消耗、幸存奖励当前位置和目标位置之间的惩罚项。从均匀分布x和y都是[-3, 3]的均匀分布中采样目标位置。
   """Ant environment with target position. The code is adapted from
   https://github.com/cbfinn/maml_rl/blob/9c8e2ebd741cb0c7b8bf2d040c4caeeb8e06cc95/rllab/envs/mujoco/ant_env_rand_goal.py

   The ant follows the dynamics from MuJoCo [1], and receives at each 
   time step a reward composed of a control cost, a contact cost, a survival 
   reward, and a penalty equal to its L1 distance to the target position. The 
   tasks are generated by sampling the target positions from the uniform 
   distribution on [-3, 3]^2.

   [1] Emanuel Todorov, Tom Erez, Yuval Tassa, "MuJoCo: A physics engine for 
      model-based control", 2012 
      (https://homes.cs.washington.edu/~todorov/papers/TodorovIROS12.pdf)
   """

   #### 接受任务、任务的目标方向键值对、不进行归一化动作空间声明对父类的继承。
   def __init__(self, task={}):
      self._task = task
      self._goal_pos = task.get('position', np.zeros((2,), dtype=np.float32))
      self._action_scaling = None
      super(AntPosEnv, self).__init__()

   def step(self, action):
    
      #### 在仿真器中采用self.frame_skip帧率执行action动作后进行仿真从仿真器中获取蚂蚁的采取动作后的位置xyposafter
      self.do_simulation(action, self.frame_skip)
      xyposafter = self.get_body_com("torso")[:2]

      #### 当前位置和目标位置的曼哈顿距离作为奖励幸存奖励是0.05控制损失应该是一个幅度如果控制信号越大那么损失就越大接触摩擦力损失按公式计算。
      goal_reward = -np.sum(np.abs(xyposafter - self._goal_pos)) + 4.0
      survive_reward = 0.05
      ctrl_cost = 0.5 * 1e-2 * np.sum(np.square(action / self.action_scaling))
      contact_cost = 0.5 * 1e-3 * np.sum(
         np.square(np.clip(self.sim.data.cfrc_ext, -1, 1)))

      #### 从上上上一个类中获得位置、接触摩擦力和其他一些从参数。计算奖励。self.state_vector()的意思是将蚂蚁的位姿[1]和速度[2]变成一个向量。如果状态信息都是有限值且速度在[0.2,1.0]的范围内那么就是没有完成notdone=True。反之就是完成了done=True。infos记录奖励信息。最后返回一个元组。
      observation = self._get_obs()
      reward = goal_reward - ctrl_cost - contact_cost + survive_reward
      state = self.state_vector()
      notdone = np.isfinite(state).all() \
                and state[2] >= 0.2 and state[2] <= 1.0
      done = not notdone
      infos = dict(reward_goal=goal_reward, reward_ctrl=-ctrl_cost,
                   reward_contact=-contact_cost, reward_survive=survive_reward,
                   task=self._task)
      return (observation, reward, done, infos)

   #### 从[-3.0, 3.0]和[-3.0, 3.0]的均匀分布中采样num_tasks个任务在每个任务中记录键值对'position'和数值。
   def sample_tasks(self, num_tasks):
      positions = self.np_random.uniform(-3.0, 3.0, size=(num_tasks, 2))
      tasks = [{'position': position} for position in positions]
      return tasks
    
   #### 重置任务。
   def reset_task(self, task):
      self._task = task
      self._goal_pos = task['position']
阿里云国内75折 回扣 微信号:monov8
阿里云国际,腾讯云国际,低至75折。AWS 93折 免费开户实名账号 代冲值 优惠多多 微信号:monov8 飞机:@monov6