基于二叉树的改进SPIHT算法(Matlab代码实现)

阿里云国内75折 回扣 微信号:monov8
阿里云国际,腾讯云国际,低至75折。AWS 93折 免费开户实名账号 代冲值 优惠多多 微信号:monov8 飞机:@monov6

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势🌞🌞🌞博客内容尽量做到思维缜密逻辑清晰为了方便读者。

⛳️座右铭行百里者半于九十。

📋📋📋本文目录如下🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


💥1 概述

文献来源

随着现代社会越来越大量的信息需要存储和传输通常会对这些信息进行压缩。人们不仅希望压缩算法有较高的压缩比而且希望算法执行速度快。小波变换具有良好的时频局部表达能力和多分辨率分析特性并有快速分解重构算法在图像编码领域得到了广泛的应用。嵌入式零树编码算

法[1](Embedded Zerotree Wavelet, EZW)是一种基于小波变换的图像压缩算法它通过不同尺度的小波系数在每个比特平面的空间相似性构造零树从而用一个零树根成功地预测了大量非重要系数取得了比基于离散余弦变换的 JPEG 更好的 压 缩 效 果 。 多 级 树 集 合 分 裂 (Set Partitioning in Hierarchical Trees, SPIHT)算法[2]对 EZW 算法做了重要改进其具有更高的压缩效率、更快的执行速度等优点是目前基于零树结构的压缩算法中的较优的算法[3]。SPECK(Set

Partitioning Embedded block)算法[4]加快了计算速度并进一步利用了子带内相连系数块的关系。

为取得更好的压缩效果以上文献中几乎所有算法都需要进行无损压缩(熵编码)以便提高算法效率。然而进行熵编码需要很大的计算量。如果在 SPIHT 算法中使用算术编码编码时间将会多一倍以上[2]。为在保持 SPIHT 算法速度的同时改进压缩效果本文提出一种新的基于 SPIHT 和二叉树的快速编码算法。该算法与上述文献不同虽然文献[9]提出了一种基于提升小波的二叉树图像编码方法不过此方法中的二叉树是一种和 SPIHT 的方向树类似的跨尺度的零树结构而本文算法中的二叉树则建立在同一尺度的相邻系数上。

📚2 运行结果

 

 部分代码

clc;clear;

%-----------   Input   ----------------

global level carow row

imname = 'img_lena.bmp';   
Orig_I=double(imread(imname));

[row, col] = size(Orig_I);

% 最大比特率
rate = 1; 
max_bits = floor(rate * row^2);

% 5个比特率下的编码长度[128:1, 64:1, 32:1, 16:1, 8:1]
brates = floor([0.0625, 0.125, 0.25, 0.5, 1]*row*row);

%-----------   Wavelet Decomposition   ----------------
n = size(Orig_I,1);
n_log = log2(n); 

level = floor(n_log);
% level = 3;

carow = 2^(n_log-level);

I_W = wavecdf97(Orig_I, level);

n_max = floor(log2(abs(max(max(I_W)'))));  % 初始阈值T=2^n_max

% =========================================================================
% Coding
[out_head,out_code,out_type,pixFlag] = func_SPIHT_Enc(I_W, max_bits, level); 
l2 = find(out_code==2);   out_code(l2)=[];
l2 = find(out_type=='O');  out_type(l2)=[];

% =========================================================================
% Decoding
disp(['aa_TSPIHT_' imname ' = [']);
img_dec = func_SPIHT_Dec(out_head,out_code,brates,Orig_I);
disp('];');

img_spiht = wavecdf97(img_dec, -level);
Q = 255;
MSE = sum(sum((img_spiht - Orig_I) .^ 2)) / row / col;
psnr = 10*log10(Q*Q/MSE);
rate = numel(Orig_I)*8/length(out_code);
disp([psnr,rate]);

clc;clear;

%-----------   Input   ----------------

global level carow row

imname = 'img_lena.bmp';   
Orig_I=double(imread(imname));

[row, col] = size(Orig_I);

% 最大比特率
rate = 1; 
max_bits = floor(rate * row^2);

% 5个比特率下的编码长度[128:1, 64:1, 32:1, 16:1, 8:1]
brates = floor([0.0625, 0.125, 0.25, 0.5, 1]*row*row);

%-----------   Wavelet Decomposition   ----------------
n = size(Orig_I,1);
n_log = log2(n); 

level = floor(n_log);
% level = 3;

carow = 2^(n_log-level);

I_W = wavecdf97(Orig_I, level);

n_max = floor(log2(abs(max(max(I_W)'))));  % 初始阈值T=2^n_max

% =========================================================================
% Coding
[out_head,out_code,out_type,pixFlag] = func_SPIHT_Enc(I_W, max_bits, level); 
l2 = find(out_code==2);   out_code(l2)=[];
l2 = find(out_type=='O');  out_type(l2)=[];

% =========================================================================
% Decoding
disp(['aa_TSPIHT_' imname ' = [']);
img_dec = func_SPIHT_Dec(out_head,out_code,brates,Orig_I);
disp('];');

img_spiht = wavecdf97(img_dec, -level);
Q = 255;
MSE = sum(sum((img_spiht - Orig_I) .^ 2)) / row / col;
psnr = 10*log10(Q*Q/MSE);
rate = numel(Orig_I)*8/length(out_code);
disp([psnr,rate]);

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络如有侵权请联系删除。

[1]黄可坤.基于二叉树的改进SPIHT算法[J].计算机工程,2012,38(15):218-221. 

阿里云国内75折 回扣 微信号:monov8
阿里云国际,腾讯云国际,低至75折。AWS 93折 免费开户实名账号 代冲值 优惠多多 微信号:monov8 飞机:@monov6